The Corsar Project: Can Polarimateric Sar Interferometry Improve Forest Biomass Estimation?

نویسندگان

  • Clare Rowland
  • Heiko Balzter
  • Ruth Cox
  • Paul Saich
  • Oliver Stebler
چکیده

RESUME The main limitation in the application of spaceborne SAR to large-scale forest biomass mapping is the variability in canopy structure and vegetation density. It causes signal saturation and a large residual error in the parameter estimates. A problem in defining retrieval algorithms for forest biomass is that microwaves respond to the shapes, sizes, orientations and dielectric properties of all the illuminated scatterers including the ground. Microwave backscatter models have revealed that the effect of variation in canopy structure on the signal can be higher than the effect of biomass. Polarimetric SAR interferometry potentially offers a means of improving SAR-based estimates of forest biomass by quantifying canopy structural variability. The polarisation information is dependent on the scattering mechanisms, and the interferometric information can be used to determine the vertical location of these scattering events in the canopy. The CORSAR project (Carbon Observation and Retrieval from SAR), which is supported by the UK Natural Environment Research Council (NERC), has the objective to examine polarimetric decomposition and polarimetric SAR interferometry methods for estimating the effects of canopy structure in biomass-backscatter relationships. We present results of the polarimetric coherence optimisation of L-band E-SAR data acquired during the SAR and Hyperspectral Airborne Campaign (SHAC 2000) analysed in relationship to expected tree height.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forest Canopy Height Mapping from Dual-wavelength Sar Interferometry

The CORSAR project (Carbon Observation and Retrieval from SAR), which is supported by the UK Natural Environment Research Council (NERC), has the objective to examine polarimetric decomposition and polarimetric SAR interferometry methods for estimating the effects of canopy structure in biomass-backscatter relationships. Forest canopy height is a useful input parameter to yield models, carbon c...

متن کامل

Pageflex Server [document: D-Aalto-F871C572_00001]

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Jaan Praks Name of the doctoral dissertation Radar polarimetry and interferometry for remote sensing of boreal forest Publisher School of Electrical Engineering Unit Department of Radio Science and Engineering Series Aalto University publication series DOCTORAL DISSERTATIONS 153/2012 Field of research Space technology and remo...

متن کامل

Improvement of Biomass Estimation in Forest Areas based on Polarimetric Parameters Optimization of SETHI airborne Data using Particle Swarm Optimization Method

Estimation of forest biomass has received much attention in recent decades. Airborne and spaceborne (SAR) have a great potential to quantify biomass and structural diversity because of its penetration capability. Polarizations are important elements in SAR systems due to sensitivity of them to backscattering mechanisms and can be useful to estimate biomass. Full Polarimetric Synthetic Aperture ...

متن کامل

Polarimetric Sar Interferometry (pol-insar) for Global Forest Biomass Monitoring

A central parameter to the terrestrial carbon budget is forest biomass which represents a proxy for carbon. Despite its crucial role in the terrestrial carbon budget, forest biomass is poorly quantified across most parts of the planet due to the great difficulties in measuring biomass on the ground and consistently aggregating measurements across scales. Today’s information is largely based on ...

متن کامل

Comparison of Forest Parameter Estimation Techniques Using SAR Data

It is important to monitor forests in order to understand the impacts of global climate changes on terrestrial ecosystems. To characterize forest changes, it is useful to parameterize a forest using several parameters, such as biomass, basal area, tree density, tree height, and trunk diameter. These parameters are not independent and some of them are related by allometric equations. Remote sens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003